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N A T U R A L  T H E R M A L  R A D I A T I O N  O F  H E A T -  

A B S O R B I N G  T H E R M A L  VACUUM  C H A M B E R  

S H I E L D S  

Yu.  V. S v e t l o v ,  S. P .  G o r b a e h e v ,  
A. I. S k o v o r o d k i n ,  and  R. A. S h a g i a k h m e t o v  

UDC 536.3 

A simplified method for computing the natural thermal  radiation of heat-absorbing shields of 
vacuum chambers is elucidated; computational dependences are presented for shields of her-  
ringbone outlines and the influence of the geometric profile character is t ics  on the magnitude 
of the natural radiation is shown. 

The efficiency of the heat-absorbing shield of a thermal  vacuum chamber within which is a radiant en- 
ergy source depends greatly on how small the radiant flux, going into the chamber from the shield is. This 
flux consists of two components: the reflected radiant flux and the natural thermal radiation of the shield. It 
is expedient to examine these components separately for a detailed investigation of the influence of the shield 
on the radiant heat exchange. 

In order  to assure the requisite absoliotivity of the radiant flux, the shields of thermal vacuum cham- 
bers  are ordinarily set up in the form of a cellular construction. Each individual cell of the shield is a spatial 
cavity formed either by adjacent shield prof i les  o r  by several  surfaces of one profile (Fig. la). 

In the general case, the magnitude of the natural thermal  radiation of a cell in the shield is determined 
by computing the complex (radiant and conductive) heat exchange on the basis of zonal methods, for example, 
[2, 3]. As a rule, an awkward i terat ion method of computation is hence used, since the temperature  field in 

~ x t  8 

8 

b 

Fig. 1. Cell of a heat-absorbing shield of herringbone 
profile (a) and analysis of the local angular radiation 
coefficients from the inner fins of the profile (b). 
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Fig. 2. Dependence of the na tura l  t h e r m a l  r a d i a -  
t ion densi ty ,  E, W/m2: a) on the ex te rna l  rad ia t ion  
flux densi ty  :Eext, kW/m2; b) on the angle of p r o -  
f i le ro ta t ion  T (1, 2, 3, 4, shield cell,  inner  fin, 
cooling channel, ou t e r  fin, r e spec t ive ly ;  solid cu rves ,  
A = 0.8; dashed cu rves ,  A = 0.9). 

the  p ro f i l e s ,  which i s  unknown in advance,  depends not only on the  ex te rna l  radiant  flux, but also on the d i s -  
t r ibu t ion  of the na tura l  t h e r m a l  rad ia t ion  of the s u r f a c e s  which depends on the t e m p e r a t u r e  field i tself .  

In a n u m b e r  of  c a s e s  th is  p r o b l e m  can be  s impl i f ied  with an accu racy  adequate for  engineer ing compu-  
ta t ions .  F i r s t ,  fo r  cooling the s h i e l d b y  a c ryogen ic  coolant (liquid ni t rogen,  for  example)  it can be  con-  
s ide red  that  the  t e m p e r a t u r e  f ield in the p ro f i l e s  depends only on the  d is t r ibut ion of the ex te rna l  radiant  flux. 
Secondly, taking account of the high absorp t iv i ty  of the  b lack  su r face  coat ings of  the  p ro f i l e s  which a re  o rd i -  
na r i ly  used  (A > 0.8), the na tura l  t h e r m a l  radia t ion  of the shield su r f aces  can be  cons idered  equal to the sum 
of  jus t  those  na tu ra l  radia t ion f luxes of  the shield su r f aces  which a r e  incident d i rec t ly  (without reref lec t ion)  
on the  en t rance  su r f ace  of the  cell  

t l  

~ Q i .  (1) 
E c ---- Fe n 

It i s  poss ib l e  to w r i t e  for  any zone of the p ro f i l e  su r face  

Qi --- e~o j" T~i (M~),~a~, FeadFi. (2) 
F i 

If the surface temperature varies slightly in the zone under consideration, then (2) can be simplified 
b e c a u s e  of the  in t roduct ion of  the  m e a n  t e m p e r a t u r e  of the zone su r face  and, t he re fo re ,  of the mean  angular  
coeff icient  of rad ia t ion  ins tead  of the local  coefficient:  

Q~ -- ei~ Fiq~F~' ~en" (3) 

T h e r e f o r e ,  the e s t i m a t e  of  the na tura l  t h e r m a l  radia t ion of a cell  of  a hea t - abso rb ing  shield is  based  on 
de te rmin ing  the  t e m p e r a t u r e  f ie lds  in the shield e l emen t s  [1] and a computat ion of the local  o r  mean  angular  
radia t ion coeff ic ients .  

Let us examine  the p r o b l e m  posed  in an example  of  a hea t - abso rb ing  shield exposed to an externa l  flux 
of sufficiently high in tens i ty  and which i s  a gra t ing  of  he r r ingbone  p ro f i l e s  cooled by liquid nitrogen.  A c r o s s  
sect ion of the shield cell  pa r t i t ioned  into zones is  shown in Fig. l a :  1 is  the en t rance  su r face  of the cell; 2 
and 8 a re  inner  fins;  4 and 6 a r e  ou te r  fins;  3 and 7 a r e  annular  cooling channels;  5 i s  the exit sur face  of 
the  shield. In conformi ty  with (1), the na tura l  radia t ion of the cell. i s  e x p r e s s e d  as follows: 

1 (4) E~ = F~--~- (O~+ Q~h+ Qou~) = E~§ Eoh+ ~u~- 

It can be  expec ted  that  rad ia t ion  of the inne r  fins c o m p r i s e s  the ma in  f rac t ion  of the na tura l  radia t ion 
of the cell.  The  m a x i m a l  t e m p e r a t u r e s  and t e m p e r a t u r e  g rad ien t s  a r e  on these  fins; hence,  the computat ion 
of Qin i s  c a r r i e d  out by m e a n s  of the dependence (2) which is  wr i t t en  in the following m o r e  specif ic  fo rm for  

208 



G 

3 �84 
g 
o to go T 

th is  case: 

Fig. 3. Influence of the angle of  p ro f i l e  radia t ion Ec, 
W / m  2, on the na tura l  t h e r m a l  radia t ion  of a shield cel l  
3 / for  d i f ferent  Eext: 1) 4 kW/mi ;  2) 2; 3) 0.6 k W / m  2. 

H l~ 

Q~n = ~naS .[ Ta(x, Y)(ePdF,, F, "t- ~PaF,, F,) dxdy. (5) 
0 0 

It i s  a s sumed  h e r e  that for  ident ical  x, the t e m p e r a t u r e  is  ident ical  on both s ides of the fin. 

The  t r a n s v e r s e  d imensions  of the cell  a re  usual ly  ve ry  much less  than the shield length; hence,  a de-  
pendence  for  a s y s t e m  extending infinitely in one d i rec t ion  [4] is  used to compute  the local  radia t ion coef-  
ficients" 

~aF,, F, = ~-  (sin ~1 - -  sin ~2), ~dF,, F x = (sin % - -  sin ~) .  

Taking into account (Fig. lb) that a t  = a3 = ~ / 2 ,  sin a 2 = (MxK)/(BMx) , sin a4 = (MxW)/(AM}0, AB = S, ~1 = 
+ 7, we  obtain the computat ional  e x p r e s s i o n s  needed; 

1 ( x §  ) .  
~eF,. F, = ~ 1 - -  l # - S ' + x  ~ +2Sxcos~l  ' 

I (  x - - S c o s %  ) .  
eOae,,e~=-~ 1 - -  |/- S 2 + x  ~ - 2 S x c o s ~ l  

For  the  remain ing  cell  su r faces  (outer  fins and annular  channel), the t e m p e r a t u r e  change in the t r a n s -  
v e r s e  d i rec t ion  is  usual ly  insignificant;  hence,  the natura l  t h e r m a l  radia t ion of these  su r faces  can be  c o m -  
puted by m e a n s  of (3). If  the t e m p e r a t u r e  along the  prof i le  hence v a r i e s  noticeably,  then the dependence T(y) 
is  taken into account,  for  the outer  fin, fo r  example ,  as follows: 

H 

Q~uT e out alou~ (~r,, F, § ~P,. e, ) j" r ~ (y) dy. (6) 
0 

A computat ion of the natura l  radia t ion of the s epa ra t e  e l emen t s  and of the ceil as a whole in a shield 
of her r ingbone  p ro f i l e s  with $ = 50~ 3/= 0~ S = 98 m m ;  d = 40 ram;  / in  = 85 m m ;  lout  = 120 m m ;  H = 10 m 
yie lds  the dependences r e p r e s e n t e d  in Fig. 2a. The  r e su l t s  obtained conf i rm the phys ica l  r ep re sen ta t i on  of 
the radiant  hea t -exchange  m e c h a n i s m  in the cell, which a s sumed  that the main  f rac t ion  of the natura l  r ad i a -  
t ion i s  the radia t ion of the inner  fin. The na tura l  radiat ion of the remain ing  p a r t s  of the prof i le  y ie lds  ve ry  
much l e s s  flux, which meanwhi le  depends slightly on the ex te rna l  radiation.  

The angle of  rota t ion 7 of the p ro f i l e s  in the shield gra t ing  exe r t s  the mos t  substant ia l  influence on 
themagn i tude  E c. Shown in Fig. 2b a r e t h e  r e su l t s  of computing a cell  for  diffuse en t rance  of ex te rna l  flux 
Eext = 2 k W / m  z, A = 0.8. As is  seen, the na tura l  radiat ion of the annular  channel i s  smal l  and p rac t i ca l ly  in-  
dependent of  ro ta t ion  of the  p rof i l es .  Radiat ion of the inner  fin is  a m a x i m u m  at 3/ = 0 and d imin ishes  as the 
p rof i l e  ro t a t e s  toward  the i r r ad ia t ing  flux. At the same  t ime,  the radia t ion of the ou te r  fin grows sharply  for  
l a rge  angles of  rotation.  Consequently,  the densi ty of  natural  t h e r m a l  radiat ion of a cell  in a shield has  a 
m in imum at approx imate ly  3/= 15 ~ The  posi t ion of the min imum E c is  p r ac t i c a l l y  independent of the magn i -  
tude of the ex te rna l  load ( Fig. 3). It should be  noted that  th is  value of the angle of rota t ion l ies  in the range  
of opt imal  disposi t ion of the p ro f i l e s  f rom the viewpoint of t h e r m a l  shielding of the cryocondensat ion  pump 
outs ide the shield grat ing.  

NOTATION 

A, in tegra ted  hem i s phe r i ca l  coeff icient  of  su r f ace  absorpt ion;  c, in tegra ted  hemisphe r i ca l  su r face  
emiss iv i ty ;  Q, radiant  flux, W; E, radiant  flux densi ty,  W/mi;  T,  t e m p e r a t u r e ,  K; cr S t e f a n - B o l t z m a n n  con- 
stant  W / m  2 .K4; ~0, angular  radia t ion coefficient;  F, su r face  a rea ,  m2; $, half  the angle between the fins of a 
he r r ingbone  prof i le ;  7,  angle between the p ro f i l e  axis and the shield su r face ;  S, spacing between prof i l es ,  
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m; H length of  the prof i l e  fin, m; d, ou te r  d i am e te r  of the cooling channel; m; H, shield length, m. Indices: 
ext, outer ;  c, Shield cell;  in, inner  fin; out, outer  fin; ch, cooling channel; en, en t rance  sur face  of the cell. 
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�9 A l inear  dependence is  obtained between the t h e rm a l  r e s i s t ance  and the t e m p e r a t u r e s  for  the 
monocrys ta l l ine  f luor ides  CaFa, SrF2, BaF2, and MgF 2. Anisotropy in MgF 2 has been dis-  
covered.  

Thermal -conduc t iv i ty  m e a s u r e m e n t s  are  an efficient  method of studying the s t ruc tura l  and energy 
p r o p e r t i e s  of the c rys ta l  la t t ices  of  a c lass  of ion l a s e r  compounds (the alkali ea r th  fluorides) which are  im-  
por tant  in the p rac t i ca l  aspect.  

Monoerys ta l s  of the alkali ea r th  f luor ides  a re  cha rac t e r i zed  o v e r  the range 80-300~ by a l inear  de- 
pendence of  t h e r m a l  r e s i s t ance  on t e m p e r a t u r e :  

IV = A1T + A S (1) 

with a negative value of the constant t e r m  A a ( see  Fig. l a ,  b, where  data of the m easu rem en t s  are  given with 
an e r r o r  of 5% with r e spec t  to s t eady-s t a t e  p r o c e d u r e  [1]). It is  supposed that the negative quantity A 2 is the 
resu l t  of  par t ic ipa t ion  in heat  t r a n s f e r  of optical  b ranches  evolved in the complex s t ruc tu re  of fluorite.  The 
coefficient  of t h e r m a l  conductivity can be  r e p r e s e n t e d  in the form 

B 1 B~ 
~, ---- IV-* --~ ~'ac - Xopt ~' -7-  q T- 7 , (2) 

where 
B~ = AT ~, B~ = lAd. (A1)-'. (3) 

The  second t e r m  in Eq. (2) desc r ibes  the four-phonon sca t te r ing  p r o c e s s e s  of the optical  mode, since t h r ee -  
phonon p r o c e s s e s  for  these  modes  a re  suppressed  because  of l imitat ions due to the laws of conservat ion of 
energy  and momentum [2]. The numer ica l  values  of the coefficients  A1 and A2 for  var ious  f luorides with 
the  s t r uc tu r e  of f luori te  in the  sequence CaF2, SrF2, and BaF 2 are:  A1 = 0.38 �9 10-a; 0.42 �9 10-3; and 0.6" 10 -3 
m / W ;  A 2 = - 1 4 . 5 - 1 0 - 3 ;  - 1 8 "  10-3; and -21 .5 "  10 -3 m - d e g / W .  The m e a s u r e d  values  of the rma l  conductivity 
in CaF2, BaF2, and SrF2 a re  higher  by approximately  5% than the resu l t s  of [3, 4], which probably is due to 
the  h igher  pur i ty  of the  samples.  

In cont ras t  to f luorides  with the f luori te  s t ruc ture ,  MgF 2 has the anisotropic s t ruc tu re  of rut i le  [5-7]. 
Anisotropy in the d i rec t ions  I and II to the optical  axis C[001] is  mani fes ted  by m easu rem en t s  of the e lec-  
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